Action potential propagation in dendrites of rat mitral cells in vivo.
نویسندگان
چکیده
Odors evoke beta-gamma frequency field potential oscillations in the olfactory systems of awake and anesthetized vertebrates. In the rat olfactory bulb, these oscillations reflect the synchronous discharges of mitral cells that result from both their intrinsic membrane properties and their dendrodendritic interactions with local inhibitory interneurons. Activation of dendrodendritic synapses is purportedly involved in odor memory and odor contrast enhancement. Here we investigate in vivo to what extent action potentials propagate to remote dendrodendritic sites in the entire dendritic tree and if this propagation is changed during discharges at 40 Hz. By combining intracellular recording and two-photon microscopy imaging of intracellular calcium ([Ca2+]i), we show that in remote branches of the apical tuft and basal dendrites, transient Ca2+ changes are triggered by single sodium action potentials. Neither the amplitude of these Ca2+ transients nor that of action potentials obtained from intradendritic recordings showed a significant attenuation as a function of the distance from the soma. Calcium channel density seemed homogeneous; however, propagating action potentials occasionally failed to trigger a Ca2+ transient at a site closer to the soma whereas it did farther. This suggests that measurements of calcium transients underestimate the occurrence of sodium action potentials. During 40 Hz bursts of action potentials, [Ca2+]i increases with the number of action potentials in all dendritic compartments. These results suggest that the presence of release sites in dendrites is accompanied by an "axonal-like behavior" of the entire dendritic tree of mitral cells, including their most distal dendritic branches.
منابع مشابه
Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb.
In the mammalian main olfactory bulb (MOB), the release of glutamate from lateral dendrites of mitral cells onto the dendrites of granule cells evokes recurrent and lateral inhibition of mitral cell activity. Whole-cell voltage recordings in the mouse MOB in vivo and in vitro show that recurrent and lateral inhibition together control the number, duration, and onset of odor-evoked action potent...
متن کاملAction potential propagation into the presynaptic dendrites of rat mitral cells.
1. Dendritic patch-clamp recordings were obtained from mitral cells in rat olfactory bulb slices, up to 350 microns from the soma. Simultaneous dendritic and somatic whole-cell recordings indicated that action potentials (APs) evoked by somatic or dendritic current injection were initiated near the soma. Both the large amplitude (100.7 +/- 1.1 mV) and the short duration (1.38 +/- 0.07 ms) of th...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملBrief Communication Tuft Calcium Spikes in Accessory Olfactory Bulb Mitral Cells
The mammalian accessory olfactory system is critical for the detection and identification of pheromones and the representation of complex stimuli including sex, genetic relatedness, and individual identity. Mitral cells, the principal cells of the accessory olfactory bulb (AOB), receive monosynaptic input from the sensory periphery and already show highly specific response properties, firing se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2003